Efficient GPU Implementation of the Integral Histogram

نویسندگان

  • Mahdieh Poostchi
  • Kannappan Palaniappan
  • Filiz Bunyak
  • Michela Becchi
  • Guna Seetharaman
چکیده

The integral histogram for images is an efficient preprocessing method for speeding up diverse computer vision algorithms including object detection, appearance-based tracking, recognition and segmentation. Our proposed Graphics Processing Unit (GPU) implementation uses parallel prefix sums on row and column histograms in a cross-weave scan with high GPU utilization and communication-aware data transfer between CPU and GPU memories. Two different data structures and communication models were evaluated. A 3-D array to store binned histograms for each pixel and an equivalent linearized 1-D array, each with distinctive data movement patterns. Using the 3-D array with many kernel invocations and low workload per kernel was inefficient, highlighting the necessity for careful mapping of sequential algorithms onto the GPU. The reorganized 1-D array with a single data transfer to the GPU with high GPU utilization, was 60 times faster than the CPU version for a 1K × 1K image reaching 49 fr/sec and 21 times faster for 512 × 512 images reaching 194 fr/sec. The integral histogram module is applied as part of the likelihood of features tracking (LOFT) system for video object tracking using fusion of multiple cues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Integral Histogram Computations on GPU for Real-Time Video Analytics

In many Multimedia content analytics frameworks feature likelihood maps represented as histograms play a critical role in the overall algorithm. Integral histograms provide an efficient computational framework for extracting multi-scale histogram-based regional descriptors in constant time which are considered as the principle building blocks of many video content analytics frameworks. We evalu...

متن کامل

Efficient Histogram Algorithms for NVIDIA CUDA Compatible Devices

We present two efficient histogram algorithms designed for NVIDIA’s compute unified device architecture (CUDA) compatible graphics processor units (GPUs). Our algorithm can be used for parallel computation of histograms on large data-sets and for thousands of bins. Traditionally histogram computation has been difficult and inefficient on the GPU. This often means that GPU-based implementation o...

متن کامل

An Efficient Particle Filter-based Tracking Method Using Graphics Processing Unit (GPU)

Particle filter has been proven very robust in handling non-linear and non-Gaussian problems and has been widely used in the area of object tracking. One of the main problems in particle filter-based object tracking is, however, its high computational cost induced by the most time-consuming stage of measurement model computation. This paper makes progress in resolving the problem by proposing a...

متن کامل

Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)

Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...

متن کامل

Fast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal

Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of  the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012